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non-linear counterpart 

P N Kaloyerou and J P Vigier 
Laboratoire de Physique Theorique (CNRS/UA No 769), Institut Henri Poincart, 11 rue 
Pierre et Marie Curie, 75231 Paris, Cedex 05, France 
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Abstract. Recently, relativistic quantum mechanical wave equations involving an extra 
scalar evolution parameter (analogous to proper time) have been increasingly studied in 
the literature. Since the physical meaning of this parameter is still very much a matter of 
discussion we aim to give it a clear physical meaning and then to proceed to a stochastic 
derivation of a non-linear evolution time Klein-Gordon equation with a view to representing 
possible vacuum dissipative effects. 

1. Introduction 

The use of an evolution parameter analogous to proper time in relativistic wave 
equations was first suggested by Fock [ 11 in 1937, and investigated further by Stuckel- 
berg [2] in 1941 and 1942. Stuckelberg first considered a generalisation of classical 
relativistic mechanics to allow for backward-time worldlines through the parameter 
change 

TR = mor (1) 
where we shall call T (which is clearly a scalar parameter) the evolution time and rR 
is the usual proper time. His motive was to provide a model for pair production. 
Stuckelberg extended his approach to relativistic quantum mechanics, but the only 
element to gain interest, with its reintroduction by Feynman [3], was the idea that the 
backward-time tracks represent antiparticles. 

Apart from an article by Nambu [4] in 1950 on an evolution parameter and two 
parallel articles by Feynman [5] and Schwinger [6] in 1951 (the latter treating the 
evolution time as a mathematical auxiliary tool) very little development took place in 
the evolution time, until a publication in 1968 by Cooke [7]. In the same year, Pearle 
[SI reconsidered a generalisation of classical relativistic mechanics using the evolution 
time, and since then numerous articles on the use of evolution time have appeared. 
We mention in particular the work of Horwitz, Piron, Reuse, Soffer, and Rotbart [9], 
Fanchi [lo], Collins [ l l ,  121, Greenberger [13] and Hostler [14]. For an interesting 
review of the evolution time we refer the reader to a recent article by Kyprianidis [ 151. 

In generalisations of classical relativistic mechanics the meaning of the evolution 
time r is clear and is given by (1). It is just a scalar parameter proportional to the 
proper time rR. The transition to quantum mechanics allows states which, in general, 
represent a variable rest mass, so that relation (1) is not maintained and the meaning 
of T in the wave equations becomes confused. Indeed, Hostler considered that this 
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664 P N Kaloyerou and J P Vigier 

decouples T from T~ and allows T to be treated as an independent parameter in the 
wavefunction $(x, t, y ,  z, 7).  We shall show, however, that even in the quantum 
mechanical case relationship (1) lies at the heart of the meaning of T and a clear 
relationship between 7 and rR still exists. 

The equation we consider is the evolution time Klein-Gordon equation: 

a* - -2ih - h2 a2* h2d2* 
c2 a t2  ax2 dT  

which can be obtained from the relativistic energy relation 

p w p ,  = mic2 (3) 

by the following operator replacements: 

and 

a 
87 

c2mi+ 2ih -. 

We use the metric g,, with signature (+, -, -, -). Refer to the appendix for a full list 
of the notation used. 

The Hamiltonian operator H = p ” p ,  no longer represents the total energy, but 
rather the rest mass squared. 

Plane wave solutions are 

mic27 4 = exp [ ( w t  - Kx -e)] = 4 (x, t )  exp ( - 7). 
2 

These solutions represent particles of definite mass mo, but since they are not normalis- 
able, they are not strictly solutions. As usual, they may be regarded as useful idealisa- 
tions. Instead, we must consider linear superpositions of (6) as solutions of (2). For 
example 

Such superposed solutions represent a particle with a complicated oscillating rest mass, 
and it is this feature that prevents relation (1) from being maintained in the quantum 
mechanical case. 

Apart from the physical meaning of T we are also confronted with the question of 
the meaning of *(x, y ,  z, t,  r ) .  The first point is that the use of the evolution time 
allows $*$ to be interpreted as a positive-definite probability density: 

which is one important advantage and motivation for the use of evolution time in the 
Klein-Gordon equation. Based on (8) there have been two suggestions concerning 
the interpretation of +. Cooke [8] considered that (8) limits the existence of a particle 
in time and this led him to relate the meaning of tc, to an observation, rather than 
associating it with a particle. We shall adopt the alternative interpretation suggested 
by Fanchi and Collins [12], since it is analogous to the usual interpretation of $ in 
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non-relativistic quantum mechanics. They interpreted the wavefunction 9 as giving 
the probability of an event-an event corresponding to the position of a particle at a 
particular time. Incidentally, we mention that Fanchi and Collins [ 121 derived equation 
(2) by starting with (8) as their basic assumption. 

The latter interpretation differs from the usual interpretation in that there is a 
probability distribution associated with time. Therefore, for each t there is some 
probability that a particle may or may not be found somewhere in space (hence Cooke’s 
motivation for his interpretation). This is reasonable since particles such as mesons 
have finite lifetimes. 

We may proceed to consider the physical meaning of the evolution time r, and for 
this we need to introduce, briefly, a causal interpretation of the evolution time Klein- 
Gordon equation [16]. 

To begin, we decouple (2) into two real equations through the substitution $ =  
R exp(iS/h) where R(x, y,  z, t, r )  and S(x, y ,  z, t ,  r )  are considered as real fields. This 
gives 

aR2/ar+aw(RawS) = O  ( 9 )  

and 

2a s h2  
----+a,saPs--awawR =o.  
ar R 

Equation (9) is to be regarded as a continuity equation expressing the conservation 
of $*$ with respect to 7, and is clearly not a typical relativistic continuity equation. 
However, we only require that +*$ = R 2  be conserved with respect to r for the 
probabilistic aspect of the theorx to be retained. Thus we may define the expectation 
values of Hermitian operators, 0, representing physical observables as 

t m  

(0) = $I*& dx dt. 

Equation (10) is the Hamilton-Jacobi equation with the extra term 

h’ 
QP = - a,apR 

R 

having the dimensions of rest mass squared, after division by c2. It is the relativistic 
generalisation of Bohm’s quantum potential, and we shall continue to refer to (1 1) as 
the quantum potential for convenience, if not with strict accuracy. We may recall that 
in the de Broglie [ 171 treatment of the usual Klein-Gordon equation, de Broglie defined 
a variable mass: 

p i  = ( m i +  QP/c)‘/’ (12) 

which we shall require shortly, and note that in de Broglie’s work m,, which he called 
the bare mass, is a constant, whereas m, will generally be variable in our treatment. 

A causal interpretation is achieved by defining the 4-momentum by analogy with 
classical relativistic Hamilton-Jacobi theory: 

p w  = aws PP = d,S 

with the additional definition, 
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Also defining 

p ”  = dx@(r ) /d r  (15 )  

we can attribute a set of parallel world lines, x*(r) ,  perpendicular to surfaces of 
constant S, with a particular wavefunction. The probabilistic aspect arises because we 
cannot measure the initial conditions and we cannot therefore tell on which worldline 
an event will occur. 

We notice that the x*(r)  are parametrised by r, whereas we said earlier that in 
$(x, y,  z, t ,  r ) ,  r is regarded as an independent parameter. This does not cause problems 
if we remember that, in the non-relativistic interpretation, t in $(x, y,  z, t )  is regarded 
as an independent parameter, but the non-relativistic causal interpretation allows the 
definition of tracks x( t ) ,  y (  t )  and z (  t )  parametrised by t. The use of r in $ can likewise 
be regarded as an independent parameter. Nor does the use of r imply a five- 
dimensional space, any more than t in 4(x,  y,  z, t )  implies a four-dimensional space 
in non-relativistic theory. T,  like t, is to be regarded as a scalar evolution parameter 
for four-dimensional spacetime, just as t is regarded as an evolution parameter in 
three-dimensional space. 

Using (12)-(15) we can rewrite the Hamilton-Jacobi equation (10) as 

2 2 -  dx, dx, 
c Po-- - 

d r  d r  

so that 

c2 d r 2 p i  = dxp dx,. (16) 

Now dx’” dx, is an invariant distance and we may reparametrise using the proper time 
TR : 

c2 drR = dx’* dx,. (17) 

POr = rR (18 )  

Using (16) and (17) we get 

where the integration constant is chosen to be zero. This establishes a definite quantum 
mechanical relationship between r and TR, contrary to Hostler’s conclusion that, 
because of ( l ) ,  the quantum mechanical treatment divorces r from T R .  

Consider further the expectation value of the rest mass given by 

Since the mean contribution of the quantum potential to the de Broglie variable mass 
is zero, as may be seen from the relativistic counterpart of Eherenfest’s theorem derived 
by Fanchi and Collins [12]: 

( m $ ? ) = ( E 2 ) + ( p 2 c 2 )  (20) 

( r ) ( m O ) =  rR (21) 

we may write 

and we see that Stuckelberg’s classical relativistic reparametrisation (1) holds also in 
the quantum mechanical treatment as an average relation. 
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In passing, we note that (15) and (18) immediately give the expression for the usual 
4-velocity: 

1 
PQ 

v’” =--p’” 

tangential to the worldline x’”( 7). 
We have introduced the evolution time Klein-Gordon equation at some length 

since it is, perhaps, not too familiar to the general reader. More importantly, the 
question of the physical meaning of the evolution time has been a matter of discussion 
and we felt is necessary to give at least one possible physical meaning of the evolution 
time before using it in our subsequent derivation. For an alternative very different 
interpretation of the evolution time we refer the reader to a recent article by Fanchi 
in 1986 [lo]. We also felt it necessary to give some attention to the meaning of the 
wavefunction $(x, y, z, t, T ) ,  which has not, perhaps, been given sufficient attention in 
the numerous publications on the subject. We accept, however, that we also have left 
untouched the many questions raised by the evolution time approach. A discussion 
of these difficult questions would take us too far from our second purpose, which is 
the derivation of a non-linear evolution time Klein-Gordon equation, representing 
possible vacuum dissipative effects. 

2. Derivation of a non-linear evolution time Klein-Gordon equation representing 
possible vacuum dissipative effects 

The derivation we give here is a relativistic generalisation of an earlier article [ 181 on 
the derivation of a non-linear Schrodinger equation. We recall briefly our motivation 
for this work. 

It begins with the suggestion by Bohm and Vigier [19] of a subquantum aether, 
and the subsequent stochastic derivation of the Schrodinger equation by Nelson [20], 
for which the assumption of a subquantum aether is essential. On the mathematical 
side there has been considerable progress on the stochastic interpretation based on a 
subquantum aether [21], including relativistic generalisations to which we will shortly 
come, but there has been comparatively little study of the possible physical properties 
of such a subquantum aether. As a first step in this direction, and because effects such 
as the Unruh effect suggest vacuum dissipative effects, we proposed in the earlier 
article [ 181 to investigate the possibility that the subquantum aether possesses frictional 
dissipative effects. With an assumed frictional aether (of the covariant type suggested 
by Dirac [22]) and a generalisation of Nelson’s stochastic derivation of the Schrodinger 
equation, we were led to a non-linear Schrodinger equation. Here again, we shall see 
that the assumed frictional aether leads to a non-linear equation; the non-linear 
evolution time Klein-Gordon equation. It is worth remarking that the use of an 
evolution time allows us to proceed in much the same way as for the non-relativistic case. 

As stated in [ 181, severe limits are set on the possible properties of the subquantum 
aether by the experimental results at the quantum level, and for friction in particular, 
by the negative results of the Michelson-Morley experiment. Indeed, we used the 
experimental results for the Lamb shift to set an upper limit on the magnitude of our 
friction constant: 
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We do not, therefore, expect to observe frictional aether effects at the quantum level, 
but we do expect such effects to manifest themselves at the cosmological level and we 
suggested a possible mechanism for the non-Doppler red shifts observed for some 
galaxies and how this would modify the Hubble law in closer accordance with 
observation [ 181. We further mentioned in the same article that a relativistic generalisa- 
tion is required for a proper treatment of the non-Doppler red shifts; in particular an 
extension to the Maxwell-Proca equations is required. As a first step in this direction 
we consider the simpler derivation of the non-linear evolution time Klein-Gordon 
equation. 

In this paper, as in the first, we will not discuss solutions of the non-linear equations 
or the physical consequences. We have proposed and investigated various normalisable 
solutions, but we feel that further discussion and investigation is required, particularly 
with regard to the physical interpretation, before publication is possible. We therefore 
leave this important aspect for a later article. 

Relativistic generalisations of Nelson’s stochastic derivation of the Schrodinger 
equation have been considered by a number of authors; we mention Aron [23], de la 
Pena-Auerbach [24], Hakim [25], Lehr and Park [26], and from a more physical point 
of view, Vigier [27]. In particular, Hakim [25] has shown that the only value of the 
diffusion coefficient consistent with relativistic covariance is zero. Lehr and Park [26] 
have shown that this problem can be overcome by assuming time to be discrete. 
Further, to avoid the occurrence of spacelike stochastic jumps, Lehr and Park assumed 
that the stochastic jumps of the particle occur at the speed of light. To proceed we 
must also make similar assumptions. Thus, we assume that 

( a )  the evolution time is discrete and is characterised by an absolute minimum 
interval T ~ ,  sufficiently short to avoid inconsistency with observation; 

( 6 )  stochastic jumps occur at the velocity of light, or nearly so, since the presence 
of a frictional aether will affect this velocity very slightly (actually, negligibly, if we 
recall that the maximum value of our friction constant is p G In( 1 + 4 x 10-13). 

To represent frictional effects in the non-relativistic case we proposed the use of a 
reduced time [18], first suggested by Levi-Civita [28] in 1896 and introduced into the 
quantum theory by Caldirola [29] and Kanai [30]. To represent friction in the 
subquantum aether in the relativistic case, we can generalise this idea by considering 
a reduced evolution time *IT, defined by 

= X ( 7 )  * 

so that, 

where * T  is the reduced evolution time. Henceforth, all modified quantities (not 
necessarily reduced) will be denoted by a * superscript. 

Imposing the initial conditions * T  = 0 for P = 0 and d*TO = d.r, we get 

where y(  T) has the dimensions mt-’ (mass x inverse time), and where we have approxi- 
mated a sum (required by the discrete nature of T )  by an integral: this is a reasonable 
approximation since T~ is necessarily very short. For simplicity, we assume simple 
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friction for which y is a positive constant, though we note that the derivation follows 
through for the more general ~ ( 7 ) .  With y =  constant, V ( T )  becomes 

which we note again are only approximations, though reasonably accurate ones, because 
of the discrete nature of T. 

With these definitions we can immediately generalise Nelson’s stochastic definitions 
[20] for the forward and backward derivatives: 

x”( T +  A T )  - x”( T )  

A * T - T ~  )=( A W T ,  lim ( AT 

)=( lim ( AT A * T - t T ,  AT’rc 

( xLI ( T + AT:- x W  ( T )  
*D+x”( T )  = lim 

* D-x’” ( T )  = lim (x”(T)-;I:T-AT) x ~ ( T )  - X ” ( T  - A T )  

so that 

* D, = eyTD+ and * D- = eY‘D-. (26) 

The stochastic derivatives for a general function F(x”(T) ,  T )  of a stochastic process 
x & ( T )  with respect to the reduced evolution time are 

with * v the reduced evolution time diffusion coefficient. 
We begin our derivation by defining the stochastic process xLI(  7) giving the coordin- 

ates of an event for a given T and which incorporates the frictional effects of the 
subquantum aether: 

( 2 8 )  dx”( T )  = * p $ ( x ” (  T ) ,  T )  d*T + d wy( T )  

dx” ( 7 )  = *pf ( x W (  T ) ,  T )  d*T + d WE( T )  

for the forward process and 

(29) 

for the backward process. The W( T )  are Wiener processes satisfying 

(d W?) = (d W?) = 0 

(dW$ dW:)=26t*vd*T=2Sf:vdT d.r> 0 (30) 

(dW! dW,)=-26c*Y d * T = - 2 6 ; ~  dT dT < 0. 

Clearly, we have 

* y  = v ey‘ (31) 

where Y represents the diffusion coefficient. 
With these definitions, the forward and backward 4-momenta are given by 
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Remembering that 7 is not the proper time we note that (32) gives the 4-momenta and 
not the 4-velocities. 

The probability density p ( x ,  y ,  z, t, T )  associated with a stochastic process x ’ * ( T )  

satisfies the generalised Fokker-Planck equations: 

a p / a * T =  -aW(p*p:)+*varawp = a p / a ~ =  -a,(pp:)+ va,a&p 

a p / a * 7 =  -aP(p*p! ) -*va ,app  = a p / a T =  -a , (pp?)-  va,aFp. 

The average of these two equations gives our generalised continuity equation (9): 

(33) 

a p / a * T + a p ( p * p I * )  = o  

d p / a 7 + a w ( p p ” )  = o  (34) 

or equivalently 

where p” denotes the average drift 4-momentum, from which the average drift lines 
can be obtained. It is defined by 

(35) 

(36) 

0” = i ( p : - p ! )  (37) 

(38) 

(39) 

*O” = * v  a”p /p  0” = a’*p/p P = R2(X, Y ,  z, 4 TI.  (40) 

* f”  = i * D + * D - X ” (  7 )  +f*D-*D+X”( 7 )  (41) 
where *f” is a generalised force quantity, again because 7 is not the proper time. 
Applying (41) to (32) and rearranging terms we get 

* ” _ I *  ” p” = f( p y  + p ! )  P - I (  P++*P?) 

so that 
* P -  ” p - p  eYT. 

The osmotic 4-momentum is defined as 

with the modified form given by 
*OF = 1 *  

2( P$-”P’*) 

and so again 
*OF = 0” eYr. 

The osmotic momentum is alternatively given by 

The generalisation of Nelson’s stochastic definition of acceleration [20] is 

a * p ” / a T = * f p  - (*pvdu)*p”  +(*o’~v)*o” + * V ( d ” d , ) O ” ” .  (42) 

a p F / a T +  ~ p ”  = f p  - ( p ” a . ) p F + ( O ” a . ) O w +  v(a”a,)Or (43 1 

(44) 

Using (36) and (39), (42) becomes 

where +yp” represents the frictional effect on the 4-momentum and 
* f  I* = f” e2Y’7 

(where f ”  is a generalised force quantity) since it is a second derivative with respect 
to 7. We shall consider this generalised force as being derived from a 4-potential 
A” E (4 ,  A ) :  

f ” = (e/c)(a”A” -a”A”)p,.  (45) 
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Assume the 4-momentum to be given by 

a w S = p w + ( e / c ) A w  (46) 

E = a s / a t  and pi = -&/ax, i = 1,2,  3. (47) 

with p’* the generalised 4-momentum associated with the particle. Note 

Substituting (46) into (45) and remembering that the curl of a gradient is zero we get 
for f w :  

fw = ( e / c ) ( a r A ” - a ” A p ) ( a , S - ( e / c ) A , )  

= -( e/c)(a”Aw - apAu)(a,S - ( e/c)Av).  (48) 
Substituting (46) and (47) into (43), and using the relation 

-p”a, ,pp = (e/c)(a”Ap -arAu)(a,S - (e /c)Av) -+aw(a,S - ( e/c)Av)(a”S - (e /c)A”)  

together with A@ = PE,  where E is a scalar potential, we get, after simplification, 
(49) 

We notice that the curl term in (49) cancels the force term in (43) and note that 
aAp/a7 = 0. 

v = h(1 - p )  P=.Y 

For the final step we substitute in (50) the diffusion coefficient vt, 

with p s In( 1 + 4  x discussed in our earlier article [18], and use $ = R exp(iS/h).  
We finally get the non-linear evolution time Klein-Gordon equation with an electro- 
magnetic potential: 

3. Conclusion 

We have introduced the use of an evolution time T in relativistic wave equations, which 
has been considered by a number of authors, as mentioned in our introduction. We 
restricted ourselves only to a discussion of certain questions rai3ed by this approach. 
In particular, we addressed the question of the physical meaning of T and of the 
interpretation of $(x, y ,  z, t ,  7) .  

We went on to extend an earlier investigation [18] concerning the possibility of a 
frictional subquantum aether. On the basis of this assumption we derived a non-linear 
evolution time Klein-Gordon equation, though we have left a discussion of the solutions 
and their physical interpretation for a later article. As a consequence of this work we 
hope to provide a physical mechanism for the non-Doppler red shifts, briefly discussed 
in our earlier article [18]. A proper treatment of the non-Doppler red shifts and the 
modifications to the Hubble law will require an application of our idea of a frictional 
subquantum aether to the Proca-Maxwell equations. We regard the present derivation, 
aside from its intrinsic interest, as a first step in this direction. 

f For dimensional consistency we define a dimensionless constant p = ay ,  where a has dimensions mt-’ .  
a is not physically significant and may be chosen equal to unity. 
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Notation 

0 0  

0 -1 
0 0 0 - 1  

as dS as aS 
P z  = -- az at  ax Pr = -ay 

g,, 

P x  = -- E = -  

a a a a E + - i h -  px+ih-  pY+ih--  p z + i h -  
at  ax ay az 

Electromagnetic potential (Gaussian system of units is used): 

A,  = (9, -Ax, -A,,  -A, )  AW = (4’ Ax, A,, A , )  

P ,+P , - ( e / c )A ,  

a,s = P w  + ( e /  C 1 A,  

p’ + p’* - ( e /  c)A” 

8’”s = p p  + ( e /  c )Ap.  

Lorentz gauge: 

P A ,  = 0. 
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